Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Addiction ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597214

RESUMO

BACKGROUND AND AIMS: Pre-clinical studies suggest that the simultaneous blockade of the α1b and 5HT2A receptors may be effective in reducing alcohol consumption. This study aimed to assess the efficacy and safety of prazosin (α1b blocker) and cyproheptadine (5HT2A blocker) combination in decreasing total alcohol consumption (TAC) in alcohol use disorder (AUD). DESIGN, SETTING AND PARTICIPANTS: This was a double-blind, parallel group, placebo-controlled, Phase 2, randomized clinical trial conducted in 32 addiction treatment centres in France. A total of 108 men and 46 women with severe AUD took part. INTERVENTION: Participants were randomly assigned to one of the following 3-month treatments: (1) low-dose group (LDG) receiving 8 mg cyproheptadine and 5 mg prazosin extended-release (ER) formulation daily; (2) high-dose group (HDG) receiving 12 mg cyproheptadine and 10 mg prazosin ER daily; and (3) placebo group (PG) receiving placebo of cyproheptadine and prazosin ER. A total of 154 patients were randomized: 54 in the PG, 54 in the LDG and 46 in the HDG. MEASUREMENTS: The primary outcome was TAC change from baseline to month 3. FINDINGS: A significant main treatment effect in the change in TAC was found in the intent-to-treat population (P = 0.039). The HDG and LDG showed a benefit in the change in TAC from baseline to month 3 compared with PG: -23.6 g/day, P = 0.016, Cohen's d = -0.44; -18.4 g/day, P = 0.048 (Bonferroni correction P < 0.025), Cohen's d = -0.36. In a subgroup of very high-risk drinking-level participants (> 100 g/day of pure alcohol for men and > 60 g/day for women), the difference between the HDG and the PG in the primary outcome was -29.8 g/day (P = 0.031, Cohen's d = -0.51). The high and low doses were well-tolerated with a similar safety profile. CONCLUSIONS: A randomized controlled trial of treatment of severe alcohol use disorder with a cyproheptadine-prazosin combination for 3 months reduced drinking by more than 23 g per day compared with placebo. A higher dose combination was associated with a larger magnitude of drinking reduction than a lower dose combination while showing similar safety profile.

2.
Microbiome ; 12(1): 76, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649950

RESUMO

BACKGROUND: The etiology of inflammatory bowel disease (IBD) is unclear but involves both genetics and environmental factors, including the gut microbiota. Indeed, exacerbated activation of the gastrointestinal immune system toward the gut microbiota occurs in genetically susceptible hosts and under the influence of the environment. For instance, a majority of IBD susceptibility loci lie within genes involved in immune responses, such as caspase recruitment domain member 9 (Card9). However, the relative impacts of genotype versus microbiota on colitis susceptibility in the context of CARD9 deficiency remain unknown. RESULTS: Card9 gene directly contributes to recovery from dextran sodium sulfate (DSS)-induced colitis by inducing the colonic expression of the cytokine IL-22 and the antimicrobial peptides Reg3ß and Reg3γ independently of the microbiota. On the other hand, Card9 is required for regulating the microbiota capacity to produce AhR ligands, which leads to the production of IL-22 in the colon, promoting recovery after colitis. In addition, cross-fostering experiments showed that 5 weeks after weaning, the microbiota transmitted from the nursing mother before weaning had a stronger impact on the tryptophan metabolism of the pups than the pups' own genotype. CONCLUSIONS: These results show the role of CARD9 and its effector IL-22 in mediating recovery from DSS-induced colitis in both microbiota-independent and microbiota-dependent manners. Card9 genotype modulates the microbiota metabolic capacity to produce AhR ligands, but this effect can be overridden by the implantation of a WT or "healthy" microbiota before weaning. It highlights the importance of the weaning reaction occurring between the immune system and microbiota for host metabolism and immune functions throughout life. A better understanding of the impact of genetics on microbiota metabolism is key to developing efficient therapeutic strategies for patients suffering from complex inflammatory disorders. Video Abstract.

3.
Elife ; 122023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36995951

RESUMO

T-cell receptors (TCRs) are formed by stochastic gene rearrangements, theoretically generating >1019 sequences. They are selected during thymopoiesis, which releases a repertoire of about 108 unique TCRs per individual. How evolution shaped a process that produces TCRs that can effectively handle a countless and evolving set of infectious agents is a central question of immunology. The paradigm is that a diverse enough repertoire of TCRs should always provide a proper, though rare, specificity for any given need. Expansion of such rare T cells would provide enough fighters for an effective immune response and enough antigen-experienced cells for memory. We show here that human thymopoiesis releases a large population of clustered CD8+ T cells harboring α/ß paired TCRs that (i) have high generation probabilities and (ii) a preferential usage of some V and J genes, (iii) which CDR3 are shared between individuals, and (iv) can each bind and be activated by multiple unrelated viral peptides, notably from EBV, CMV, and influenza. These polyspecific T cells may represent a first line of defense that is mobilized in response to infections before a more specific response subsequently ensures viral elimination. Our results support an evolutionary selection of polyspecific α/ß TCRs for broad antiviral responses and heterologous immunity.


Assuntos
Antígenos Virais , Linfócitos T CD8-Positivos , Humanos , Antígenos Virais/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T/genética , Peptídeos
4.
Clin Cancer Res ; 28(22): 4983-4994, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36067339

RESUMO

PURPOSE: CD70 is a costimulatory molecule known to activate CD27-expressing T cells. CD27-CD70 interaction leads to the release of soluble CD27 (sCD27). Clear-cell renal cell carcinoma (ccRCC) expresses the highest levels of CD70 among all solid tumors; however, the clinical consequences of CD70 expression remain unclear. EXPERIMENTAL DESIGN: Tumor tissue from 25 patients with ccRCC was assessed for the expression of CD27 and CD70 in situ using multiplex immunofluorescence. CD27+ T-cell phenotypes in tumors were analyzed by flow cytometry and their gene expression profile were analyzed by single-cell RNA sequencing then confirmed with public data. Baseline sCD27 was measured in 81 patients with renal cell carcinoma (RCC) treated with immunotherapy (35 for training cohort and 46 for validation cohort). RESULTS: In the tumor microenvironment, CD27+ T cells interacted with CD70-expressing tumor cells. Compared with CD27- T cells, CD27+ T cells exhibited an apoptotic and dysfunctional signature. In patients with RCC, the intratumoral CD27-CD70 interaction was significantly correlated with the plasma sCD27 concentration. High sCD27 levels predicted poor overall survival in patients with RCC treated with anti-programmed cell death protein 1 in both the training and validation cohorts but not in patients treated with antiangiogenic therapy. CONCLUSIONS: In conclusion, we demonstrated that sCD27, a surrogate marker of T-cell dysfunction, is a predictive biomarker of resistance to immunotherapy in RCC. Given the frequent expression of CD70 and CD27 in solid tumors, our findings may be extended to other tumors.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Ligante CD27/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Imunoterapia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Microambiente Tumoral
5.
Ann Rheum Dis ; 81(12): 1685-1694, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35973803

RESUMO

OBJECTIVES: A regulatory T cell (Treg) insufficiency due to shortage of interleukin-2 (IL-2) is central to the pathophysiology of systemic lupus erythematosus (SLE). We performed a multicentre, double-blinded, randomised, placebo-controlled phase II proof-of-concept trial to evaluate the efficacy of low-dose IL-2 therapy in patients with SLE having moderate-to-severe disease activity while receiving standard treatment. METHODS: We randomly assigned 100 patients in a 1:1 ratio to receive either 1.5 million IU/day of subcutaneous IL-2 (ILT-101) or placebo for 5 days followed by weekly injections for 12 weeks. Clinical efficacy was assessed at week 12 in a predefined hierarchical analysis of (1) the SLE responder index-4 (SRI-4) response as a primary end point, and of (2) relative and (3) absolute changes in the Safety of Estrogens in Lupus Erythematosus National Assessment-Systemic Lupus Erythematosus Disease Activity Index scores as key secondary end points. RESULTS: The primary end point was not met in the intention-to-treat population (ILT-101: 68%, placebo: 58%; p=0.3439), due to a 100% SRI-4 response rate in the placebo group from the two sites from Bulgaria. A post hoc per-protocol analysis on a prespecified population that excluded patients from these two sites (n=53) showed a statistically significant difference for the SRI-4 response rate (ILT-101: 83.3%; placebo: 51.7%; p=0.0168), and for the two key secondary end points, accompanied by differences in several secondary exploratory end points. ILT-101 was well tolerated and there was no generation of antidrug antibodies. CONCLUSIONS: The post hoc hierarchical analysis of the primary and key secondary end points in a per-protocol population, complemented by the exploratory analyses of multiple other secondary end points, support that low-dose IL-2 is beneficial in active SLE. TRIAL REGISTRATION NUMBER: NCT02955615.


Assuntos
Interleucina-2 , Lúpus Eritematoso Sistêmico , Humanos , Interleucina-2/uso terapêutico , Índice de Gravidade de Doença , Fatores Imunológicos/uso terapêutico , Método Duplo-Cego , Resultado do Tratamento
6.
Sci Rep ; 12(1): 9440, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676403

RESUMO

In the gut ecosystem, microorganisms regulate group behaviour and interplay with the host via a molecular system called quorum sensing (QS). The QS molecule 3-oxo-C12:2-HSL, first identified in human gut microbiota, exerts anti-inflammatory effects and could play a role in inflammatory bowel diseases where dysbiosis has been described. Our aim was to identify which signalling pathways are involved in this effect. We observed that 3-oxo-C12:2-HSL decreases expression of pro-inflammatory cytokines such as Interleukine-1ß (- 35%) and Tumor Necrosis Factor-α (TNFα) (- 40%) by stimulated immune RAW264.7 cells and decreased TNF secretion by stimulated PBMC in a dose-dependent manner, between 25 to 100 µM. Transcriptomic analysis of RAW264.7 cells exposed to 3-oxo-C12:2-HSL, in a pro-inflammatory context, highlighted JAK-STAT, NF-κB and TFN signalling pathways and we confirmed that 3-oxo-C12:2-HSL inhibited JAK1 and STAT1 phosphorylation. We also showed through a screening assay that 3-oxo-C12:2-HSL interacted with several human bitter taste receptors. Its anti-inflammatory effect involved TAS2R38 as shown by pharmacologic inhibition and led to an increase in intracellular calcium levels. We thus unravelled the involvement of several cellular pathways in the anti-inflammatory effects exerted by the QS molecule 3-oxo-C12:2-HSL.


Assuntos
Microbioma Gastrointestinal , Percepção de Quorum , 4-Butirolactona/metabolismo , Anti-Inflamatórios/metabolismo , Ecossistema , Homosserina/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Pseudomonas aeruginosa/fisiologia , Paladar
7.
J Immunol ; 208(11): 2573-2582, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35577368

RESUMO

Upon infection, B lymphocytes develop clonal responses. In teleost fish, which lack lymph nodes, the kinetics and location of B cell responses remain poorly characterized. Fish pronephros is the site of B cell differentiation and the main niche for persistence of plasma cells. In this study, we undertook the analysis of the rainbow trout IgHµ repertoire in this critical tissue for humoral adaptive immunity after primary immunization and boost with a rhabdovirus, the viral hemorrhagic septicemia virus (VHSV). We used a barcoded 5' RACE-cDNA sequencing approach to characterize modifications of the IgHµ repertoire, including VH usage in expressed V(D)J rearrangements, clonal diversity, and clonotype sharing between individual fish and treatments. In the pronephros, our approach quantified the clonotype frequency across the whole IgH repertoire (i.e., with all VH), measuring the frequency of Ag-responding clonotypes. Viral infection led to extensive modifications of the pronephros B cell repertoire, implicating several VH subgroups after primary infection. In contrast, only modest changes in repertoire persisted 5 mo later, including VHSV-specific public expansions. The IgM public response implicating IgHV1-18 and JH5, previously described in spleen, was confirmed in pronephros in all infected fish, strongly correlated to the response. However, the distribution of top clonotypes showed that pronephros and spleen B cells constitute distinct compartments with different IgH repertoires. Unexpectedly, after boost, the frequency of anti-VHSV clonotypes decreased both in pronephros and spleen, raising questions about B cell circulation. A better monitoring of B cell response kinetics in lymphoid tissues will be an essential step to understand B memory and plasmocyte formation mechanisms in fish.


Assuntos
Doenças dos Peixes , Septicemia Hemorrágica Viral , Novirhabdovirus , Oncorhynchus mykiss , Pronefro , Viroses , Animais , Septicemia Hemorrágica Viral/prevenção & controle , Oncorhynchus mykiss/genética , Baço
8.
PLoS One ; 17(4): e0266618, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35446844

RESUMO

BACKGROUND: Identifying differentially expressed genes between experimental conditions is still the gold-standard approach to interpret transcriptomic profiles. Alternative approaches based on diversity measures have been proposed to complement the interpretation of such datasets but are only used marginally. METHODS: Here, we reinvestigated diversity measures, which are commonly used in ecology, to characterize mice pregnancy microenvironments based on a public transcriptome dataset. Mainly, we evaluated the Tsallis entropy function to explore the potential of a collection of diversity measures for capturing relevant molecular event information. RESULTS: We demonstrate that the Tsallis entropy function provides additional information compared to the traditional diversity indices, such as the Shannon and Simpson indices. Depending on the relative importance given to the most abundant transcripts based on the Tsallis entropy function parameter, our approach allows appreciating the impact of biological stimulus on the inter-individual variability of groups of samples. Moreover, we propose a strategy for reducing the complexity of transcriptome datasets using a maximation of the beta diversity. CONCLUSIONS: We highlight that a diversity-based analysis is suitable for capturing complex molecular events occurring during physiological events. Therefore, we recommend their use through the Tsallis entropy function to analyze transcriptomics data in addition to differential expression analyses.


Assuntos
Ecologia , Transcriptoma , Animais , Entropia , Camundongos
9.
J Immunother Cancer ; 10(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35296557

RESUMO

BACKGROUND: Prostate cancer (PC) responds to androgen deprivation therapy (ADT) usually in a transient fashion, progressing from hormone-sensitive PC (HSPC) to castration-resistant PC (CRPC). We investigated a mouse model of PC as well as specimens from PC patients to unravel an unsuspected contribution of thymus-derived T lymphocytes and the intestinal microbiota in the efficacy of ADT. METHODS: Preclinical experiments were performed in PC-bearing mice, immunocompetent or immunodeficient. In parallel, we prospectively included 65 HSPC and CRPC patients (Oncobiotic trial) to analyze their feces and blood specimens. RESULTS: In PC-bearing mice, ADT increased thymic cellularity and output. PC implanted in T lymphocyte-depleted or athymic mice responded less efficiently to ADT than in immunocompetent mice. Moreover, depletion of the intestinal microbiota by oral antibiotics reduced the efficacy of ADT. PC reduced the relative abundance of Akkermansia muciniphila in the gut, and this effect was reversed by ADT. Moreover, cohousing of PC-bearing mice with tumor-free mice or oral gavage with Akkermansia improved the efficacy of ADT. This appears to be applicable to PC patients because long-term ADT resulted in an increase of thymic output, as demonstrated by an increase in circulating recent thymic emigrant cells (sjTRECs). Moreover, as compared with HSPC controls, CRPC patients demonstrated a shift in their intestinal microbiota that significantly correlated with sjTRECs. While feces from healthy volunteers restored ADT efficacy, feces from PC patients failed to do so. CONCLUSIONS: These findings suggest the potential clinical utility of reversing intestinal dysbiosis and repairing acquired immune defects in PC patients.


Assuntos
Microbioma Gastrointestinal , Neoplasias de Próstata Resistentes à Castração , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Androgênios/uso terapêutico , Animais , Humanos , Sistema Imunitário , Masculino , Camundongos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico
10.
Microbiome ; 7(1): 111, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375137

RESUMO

BACKGROUND: Normal mammalian development and homeostasis are dependent upon the gut microbiota. Antibiotics, essential for the treatment and prophylaxis of bacterial infections, can have collateral effects on the gut microbiota composition, which can in turn have far-reaching and potentially deleterious consequences for the host. However, the magnitude and duration of such collateral effects appear to vary between individuals. Furthermore, the degree to which such perturbations affect the host response is currently unclear. We aimed to test the hypothesis that different human microbiomes have different responses to a commonly prescribed antibiotic and that these differences may impact the host response. METHODS: Germ-free mice (n = 30) humanized with the microbiota of two unrelated donors (A and B) were subjected to a 7-day antibiotic challenge with amoxicillin-clavulanate ("co-amoxiclav"). Microbiome and colonic transcriptome analysis was performed, pre (day 0) and post antibiotics (day 8) and subsequently into recovery (days 11 and 18). RESULTS: Unique community profiles were evident depending upon the donor, with donor A recipient mice being dominated by Prevotella and Faecalibacterium and donor B recipient mice dominated by Bacteroides and Parabacteroides. Donor A mice underwent a marked destabilization of their microbiota following antibiotic treatment, while donor B mice maintained a more stable profile. Dramatic and overlapping alterations in the host transcriptome were apparent following antibiotic challenge in both groups. Despite this overlap, donor A mice experienced a more significant alteration in gene expression and uniquely showed correlations between host pathways and key microbial genera. CONCLUSIONS: Germ-free mice humanized by different donor microbiotas maintain distinct microbiome profiles, which respond in distinct ways to antibiotic challenge and evince host responses that parallel microbiome disequilibrium. These results suggest that inter-individual variation in the gut microbiota may contribute to personalized host responses following microbiota perturbation.


Assuntos
Combinação Amoxicilina e Clavulanato de Potássio/administração & dosagem , Antibacterianos/administração & dosagem , Bactérias/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Microbiota , Animais , Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , Colo/microbiologia , Transplante de Microbiota Fecal , Fezes/microbiologia , Perfilação da Expressão Gênica , Vida Livre de Germes , Humanos , Masculino , Camundongos
11.
Sci Rep ; 9(1): 5398, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30931953

RESUMO

The gut barrier plays an important role in human health. When barrier function is impaired, altered permeability and barrier dysfunction can occur, leading to inflammatory bowel diseases, irritable bowel syndrome or obesity. Several bacteria, including pathogens and commensals, have been found to directly or indirectly modulate intestinal barrier function. The use of probiotic strains could be an important landmark in the management of gut dysfunction with a clear impact on the general population. Previously, we found that Lactobacillus rhamnosus CNCM I-3690 can protect intestinal barrier functions in mice inflammation model. Here, we investigated its mechanism of action. Our results show that CNCM I-3690 can (i) physically maintain modulated goblet cells and the mucus layer and (ii) counteract changes in local and systemic lymphocytes. Furthermore, mice colonic transcriptome analysis revealed that CNCM I-3690 enhances the expression of genes related to healthy gut permeability: motility and absorption, cell proliferation; and protective functions by inhibiting endogenous proteases. Finally, SpaFED pili are clearly important effectors since an L. rhamnosus ΔspaF mutant failed to provide the same benefits as the wild type strain. Taken together, our data suggest that CNCM I-3690 restores impaired intestinal barrier functions via anti-inflammatory and cytoprotective responses.


Assuntos
Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Lacticaseibacillus rhamnosus/fisiologia , Muco/metabolismo , Probióticos/farmacologia , Animais , Células CACO-2 , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Citoproteção/efeitos dos fármacos , Dinitrofluorbenzeno/análogos & derivados , Perfilação da Expressão Gênica/métodos , Células Caliciformes/efeitos dos fármacos , Células Caliciformes/metabolismo , Células HEK293 , Células HT29 , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Intestinos/microbiologia , Intestinos/fisiologia , Lacticaseibacillus rhamnosus/genética , Camundongos , Mutação , Permeabilidade/efeitos dos fármacos , Substâncias Protetoras/farmacologia
12.
Ann Rheum Dis ; 78(2): 209-217, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30472651

RESUMO

OBJECTIVE: Regulatory T cells (Tregs) prevent autoimmunity and control inflammation. Consequently, any autoimmune or inflammatory disease reveals a Treg insufficiency. As low-dose interleukin-2 (ld-IL2) expands and activates Tregs, it has a broad therapeutic potential. AIM: We aimed to assess this potential and select diseases for further clinical development by cross-investigating the effects of ld-IL2 in a single clinical trial treating patients with 1 of 11 autoimmune diseases. METHODS: We performed a prospective, open-label, phase I-IIa study in 46 patients with a mild to moderate form of either rheumatoid arthritis, ankylosing spondylitis, systemic lupus erythematosus, psoriasis, Behcet's disease, granulomatosis with polyangiitis, Takayasu's disease, Crohn's disease, ulcerative colitis, autoimmune hepatitis and sclerosing cholangitis. They all received ld-IL2 (1 million IU/day) for 5 days, followed by fortnightly injections for 6 months. Patients were evaluated by deep immunomonitoring and clinical evaluation. RESULTS: ld-IL2 was well tolerated whatever the disease and the concomitant treatments. Thorough supervised and unsupervised immunomonitoring demonstrated specific Treg expansion and activation in all patients, without effector T cell activation. Indication of potential clinical efficacy was observed. CONCLUSION: The dose of IL-2 and treatment scheme used selectively activate and expand Tregs and are safe across different diseases and concomitant treatments. This and preliminary indications of clinical efficacy should licence the launch of phase II efficacy trial of ld-IL2 in various autoimmune and inflammatory diseases. TRIAL REGISTRATION NUMBER: NCT01988506.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Fatores Imunológicos/administração & dosagem , Interleucina-2/administração & dosagem , Linfócitos T Reguladores/efeitos dos fármacos , Adulto , Doenças Autoimunes/imunologia , Feminino , Humanos , Fatores Imunológicos/imunologia , Interleucina-2/imunologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Linfócitos T Reguladores/imunologia , Resultado do Tratamento
13.
Gut ; 68(7): 1190-1199, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30279238

RESUMO

OBJECTIVE: Loss of the Crohn's disease predisposing NOD2 gene results in an intestinal microenvironment conducive for colonisation by attaching-and-effacing enteropathogens. However, it remains elusive whether it relies on the intracellular recruitment of the serine-threonine kinase RIPK2 by NOD2, a step that is required for its activation of the transcription factor NF-κB. DESIGN: Colonisation resistance was evaluated in wild type and mutant mice, as well as in ex-germ-free (ex-GF) mice which were colonised either with faeces from Ripk2-deficient mice or with bacteria with similar preferences for carbohydrates to those acquired by the pathogen. The severity of the mucosal pathology was quantified at several time points postinfection by using a previously established scoring. The community resilience in response to infection was evaluated by 16S ribosomal RNA gene sequence analysis. The control of pathogen virulence was evaluated by monitoring the secretion of Citrobacter-specific antibody response in the faeces. RESULTS: Primary infection was similarly outcompeted in ex-GF Ripk2-deficient and control mice, demonstrating that the susceptibility to infection resulting from RIPK2 deficiency cannot be solely attributed to specific microbiota community structures. In contrast, delayed clearance of Citrobacter rodentium and exacerbated histopathology were preceded by a weakened propensity of intestinal macrophages to afford innate lymphoid cell activation. This tissue protection unexpectedly required the regenerating family member 3ß by instigating interleukin (IL) 17A-mediated neutrophil recruitment to the intestine and subsequent phosphorylation of signal transducer and activator of transcription 3. CONCLUSIONS: These results unveil a previously unrecognised mechanism that efficiently protects from colonisation by diarrhoeagenic bacteria early in infection.


Assuntos
Doença de Crohn/microbiologia , Doença de Crohn/patologia , Infecções por Enterobacteriaceae/prevenção & controle , Interleucina-17/fisiologia , Infiltração de Neutrófilos/fisiologia , Proteína Adaptadora de Sinalização NOD2/fisiologia , Animais , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Citrobacter rodentium , Modelos Animais de Doenças , Infecções por Enterobacteriaceae/patologia , Mucosa Intestinal/patologia , Camundongos , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Transdução de Sinais
14.
Nat Commun ; 9(1): 2802, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30022049

RESUMO

Dietary lipids favor the growth of the pathobiont Bilophila wadsworthia, but the relevance of this expansion in metabolic syndrome pathogenesis is poorly understood. Here, we showed that B. wadsworthia synergizes with high fat diet (HFD) to promote higher inflammation, intestinal barrier dysfunction and bile acid dysmetabolism, leading to higher glucose dysmetabolism and hepatic steatosis. Host-microbiota transcriptomics analysis reveal pathways, particularly butanoate metabolism, which may underlie the metabolic effects mediated by B. wadsworthia. Pharmacological suppression of B. wadsworthia-associated inflammation demonstrate the bacterium's intrinsic capacity to induce a negative impact on glycemic control and hepatic function. Administration of the probiotic Lactobacillus rhamnosus CNCM I-3690 limits B. wadsworthia-induced immune and metabolic impairment by limiting its expansion, reducing inflammation and reinforcing intestinal barrier. Our results suggest a new avenue for interventions against western diet-driven inflammatory and metabolic diseases.


Assuntos
Bilophila/patogenicidade , Infecções por Desulfovibrionaceae/microbiologia , Gorduras na Dieta/efeitos adversos , Fígado Gorduroso/microbiologia , Lacticaseibacillus rhamnosus/fisiologia , Síndrome Metabólica/microbiologia , Probióticos/farmacologia , Animais , Bilophila/crescimento & desenvolvimento , Glicemia/metabolismo , Citocinas/biossíntese , Citocinas/genética , Infecções por Desulfovibrionaceae/etiologia , Infecções por Desulfovibrionaceae/metabolismo , Infecções por Desulfovibrionaceae/terapia , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/terapia , Microbioma Gastrointestinal , Fígado/microbiologia , Fígado/patologia , Testes de Função Hepática , Masculino , Redes e Vias Metabólicas/genética , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/terapia , Camundongos , Camundongos Endogâmicos C57BL , Transcriptoma
15.
Gut ; 67(10): 1836-1844, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28790160

RESUMO

OBJECTIVE: In association with innate and adaptive immunity, the microbiota controls the colonisation resistance against intestinal pathogens. Caspase recruitment domain 9 (CARD9), a key innate immunity gene, is required to shape a normal gut microbiota. Card9-/- mice are more susceptible to the enteric mouse pathogen Citrobacter rodentium that mimics human infections with enteropathogenic and enterohaemorrhagic Escherichia coli. Here, we examined how CARD9 controls C. rodentium infection susceptibility through microbiota-dependent and microbiota-independent mechanisms. DESIGN: C. rodentium infection was assessed in conventional and germ-free (GF) wild-type (WT) and Card9-/- mice. To explore the impact of Card9-/-microbiota in infection susceptibility, GF WT mice were colonised with WT (WT→GF) or Card9-/- (Card9-/- →GF) microbiota before C. rodentium infection. Microbiota composition was determined by 16S rDNA gene sequencing. Inflammation severity was determined by histology score and lipocalin level. Microbiota-host immune system interactions were assessed by quantitative PCR analysis. RESULTS: CARD9 controls pathogen virulence in a microbiota-independent manner by supporting a specific humoral response. Higher susceptibility to C. rodentium-induced colitis was observed in Card9-/- →GF mice. The microbiota of Card9-/- mice failed to outcompete the monosaccharide-consuming C. rodentium, worsening the infection severity. A polysaccharide-enriched diet counteracted the ecological advantage of C. rodentium and the defective pathogen-specific antibody response in Card9-/- mice. CONCLUSIONS: CARD9 modulates the susceptibility to intestinal infection by controlling the pathogen virulence in a microbiota-dependent and microbiota-independent manner. Genetic susceptibility to intestinal pathogens can be overridden by diet intervention that restores humoural immunity and a competing microbiota.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Colite , Microbioma Gastrointestinal/fisiologia , Polissacarídeos , Imunidade Adaptativa/fisiologia , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Citrobacter rodentium/efeitos dos fármacos , Citrobacter rodentium/patogenicidade , Colite/imunologia , Colite/microbiologia , Dietoterapia/métodos , Interação Gene-Ambiente , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/fisiologia , Camundongos , Polissacarídeos/efeitos adversos , Polissacarídeos/metabolismo , Virulência/fisiologia
16.
Gut ; 66(6): 1039-1048, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-26843508

RESUMO

OBJECTIVE: The bacterial intestinal microbiota plays major roles in human physiology and IBDs. Although some data suggest a role of the fungal microbiota in IBD pathogenesis, the available data are scarce. The aim of our study was to characterise the faecal fungal microbiota in patients with IBD. DESIGN: Bacterial and fungal composition of the faecal microbiota of 235 patients with IBD and 38 healthy subjects (HS) was determined using 16S and ITS2 sequencing, respectively. The obtained sequences were analysed using the Qiime pipeline to assess composition and diversity. Bacterial and fungal taxa associated with clinical parameters were identified using multivariate association with linear models. Correlation between bacterial and fungal microbiota was investigated using Spearman's test and distance correlation. RESULTS: We observed that fungal microbiota is skewed in IBD, with an increased Basidiomycota/Ascomycota ratio, a decreased proportion of Saccharomyces cerevisiae and an increased proportion of Candida albicans compared with HS. We also identified disease-specific alterations in diversity, indicating that a Crohn's disease-specific gut environment may favour fungi at the expense of bacteria. The concomitant analysis of bacterial and fungal microbiota showed a dense and homogenous correlation network in HS but a dramatically unbalanced network in IBD, suggesting the existence of disease-specific inter-kingdom alterations. CONCLUSIONS: Besides bacterial dysbiosis, our study identifies a distinct fungal microbiota dysbiosis in IBD characterised by alterations in biodiversity and composition. Moreover, we unravel here disease-specific inter-kingdom network alterations in IBD, suggesting that, beyond bacteria, fungi might also play a role in IBD pathogenesis.


Assuntos
Ascomicetos/isolamento & purificação , Basidiomycota/isolamento & purificação , Candida albicans/isolamento & purificação , Colite Ulcerativa/microbiologia , Doença de Crohn/microbiologia , Disbiose/microbiologia , RNA Ribossômico 16S/análise , Bactérias/isolamento & purificação , Estudos de Casos e Controles , Colite Ulcerativa/genética , Doença de Crohn/genética , Fezes/microbiologia , Microbioma Gastrointestinal , Humanos , Polimorfismo de Nucleotídeo Único , Saccharomyces cerevisiae/isolamento & purificação
17.
J Autoimmun ; 73: 54-63, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27318739

RESUMO

Human type 1 diabetes results from a destructive auto-reactive immune response in which CD8(+) T lymphocytes play a critical role. Given the intense ongoing efforts to develop immune intervention to prevent and/or cure the disease, biomarkers suitable for prediction of disease risk and progress, as well as for monitoring of immunotherapy are required. We undertook separate multi-parameter analyses of single naïve and activated/memory CD8(+) T lymphocytes from pediatric and adult patients, with the objective of identifying cellular profiles associated with onset of type 1 diabetes. We observe global perturbations in gene and protein expression and in the abundance of T cell populations characterizing pediatric but not adult patients, relative to age-matched healthy individuals. Pediatric diabetes is associated with a unique population of CD8(+) T lymphocytes co-expressing effector (perforin, granzyme B) and regulatory (transforming growth factor ß, interleukin-10 receptor) molecules. This population persists after metabolic normalization and is especially abundant in children with high titers of auto-antibodies to glutamic acid decarboxylase and with elevated HbA1c values. These findings highlight striking differences between pediatric and adult type 1 diabetes, indicate prolonged large-scale perturbations in the CD8(+) T cell compartment in the former, and suggest that CD8(+)CD45RA(-) T cells co-expressing effector and regulatory factors are of interest as biomarkers in pediatric type 1 diabetes.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Granzimas/metabolismo , Ativação Linfocitária/imunologia , Perforina/metabolismo , Transcriptoma/imunologia , Adolescente , Adulto , Autoanticorpos/sangue , Biomarcadores/metabolismo , Linfócitos T CD8-Positivos/imunologia , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Glutamato Descarboxilase/imunologia , Hemoglobinas Glicadas/análise , Humanos , Antígenos Comuns de Leucócito/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores de Interleucina-10/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adulto Jovem
18.
Nat Med ; 22(6): 598-605, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27158904

RESUMO

Complex interactions between the host and the gut microbiota govern intestinal homeostasis but remain poorly understood. Here we reveal a relationship between gut microbiota and caspase recruitment domain family member 9 (CARD9), a susceptibility gene for inflammatory bowel disease (IBD) that functions in the immune response against microorganisms. CARD9 promotes recovery from colitis by promoting interleukin (IL)-22 production, and Card9(-/-) mice are more susceptible to colitis. The microbiota is altered in Card9(-/-) mice, and transfer of the microbiota from Card9(-/-) to wild-type, germ-free recipients increases their susceptibility to colitis. The microbiota from Card9(-/-) mice fails to metabolize tryptophan into metabolites that act as aryl hydrocarbon receptor (AHR) ligands. Intestinal inflammation is attenuated after inoculation of mice with three Lactobacillus strains capable of metabolizing tryptophan or by treatment with an AHR agonist. Reduced production of AHR ligands is also observed in the microbiota from individuals with IBD, particularly in those with CARD9 risk alleles associated with IBD. Our findings reveal that host genes affect the composition and function of the gut microbiota, altering the production of microbial metabolites and intestinal inflammation.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/imunologia , Colite/imunologia , Microbioma Gastrointestinal/imunologia , Interleucinas/imunologia , Lactobacillus/metabolismo , Receptores de Hidrocarboneto Arílico/imunologia , Triptofano/metabolismo , Adolescente , Adulto , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Cromatografia Líquida de Alta Pressão , Colite/induzido quimicamente , Colite/patologia , Colo/imunologia , Colo/microbiologia , Colo/patologia , Citocinas/imunologia , Sulfato de Dextrana/toxicidade , Transplante de Microbiota Fecal , Feminino , Microbioma Gastrointestinal/genética , Perfilação da Expressão Gênica , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Triptofano/imunologia , Adulto Jovem
19.
PLoS Comput Biol ; 12(3): e1004801, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26998760

RESUMO

Systems biology offers promising approaches for identifying response-specific signatures to vaccination and assessing their predictive value. Here, we designed a modelling strategy aiming to predict the quality of late T-cell responses after vaccination from early transcriptome analysis of dendritic cells. Using standardized staining with tetramer, we first quantified antigen-specific T-cell expansion 5 to 10 days after vaccination with one of a set of 41 different vaccine vectors all expressing the same antigen. Hierarchical clustering of the responses defined sets of high and low T cell response inducers. We then compared these responses with the transcriptome of splenic dendritic cells obtained 6 hours after vaccination with the same vectors and produced a random forest model capable of predicting the quality of the later antigen-specific T-cell expansion. The model also successfully predicted vector classification as low or strong T-cell response inducers of a novel set of vaccine vectors, based on the early transcriptome results obtained from spleen dendritic cells, whole spleen and even peripheral blood mononuclear cells. Finally, our model developed with mouse datasets also accurately predicted vaccine efficacy from literature-mined human datasets.


Assuntos
Células Dendríticas/imunologia , Imunidade Inata/imunologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Transcriptoma/imunologia , Vacinas Virais/imunologia , Animais , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Feminino , Imunidade Inata/efeitos dos fármacos , Imunização/métodos , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Vacinas Virais/administração & dosagem
20.
PLoS One ; 11(2): e0147871, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26844551

RESUMO

Cerebral Malaria (CM) is associated with a pathogenic T cell response. Mice infected by P. berghei ANKA clone 1.49 (PbA) developing CM (CM+) present an altered PBL TCR repertoire, partly due to recurrently expanded T cell clones, as compared to non-infected and CM- infected mice. To analyse the relationship between repertoire alteration and CM, we performed a kinetic analysis of the TRBV repertoire during the course of the infection until CM-related death in PbA-infected mice. The repertoires of PBL, splenocytes and brain lymphocytes were compared between infected and non-infected mice using a high-throughput CDR3 spectratyping method. We observed a modification of the whole TCR repertoire in the spleen and blood of infected mice, from the fifth and the sixth day post-infection, respectively, while only three TRBV were significantly perturbed in the brain of infected mice. Using multivariate analysis and statistical modelling, we identified a unique TCRß signature discriminating CM+ from CTR mice, enriched during the course of the infection in the spleen and the blood and predicting CM onset. These results highlight a dynamic modification and compartmentalization of the TCR diversity during the course of PbA infection, and provide a novel method to identify disease-associated TCRß signature as diagnostic and prognostic biomarkers.


Assuntos
Variação Genética , Malária Cerebral/genética , Malária Cerebral/parasitologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Animais , Encéfalo/imunologia , Encéfalo/parasitologia , Regiões Determinantes de Complementaridade/genética , Modelos Animais de Doenças , Malária Cerebral/diagnóstico , Malária Cerebral/imunologia , Camundongos , Plasmodium berghei , Prognóstico , Baço/imunologia , Baço/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...